Ela a Note on Generalized Perron Complements of Z-matrices∗

نویسندگان

  • ZHI-GANG REN
  • XIAO-YU CHENG
چکیده

The concept of the Perron complement of a nonnegative and irreducible matrix was introduced by Meyer in 1989 and it was used to construct an algorithm for computing the stationary distribution vector for Markov chains. Here properties of the generalized Perron complement of an n×n irreducible Z-matrixK are considered. First the result that the generalized Perron complements of K are irreducible Z-matrices is shown, and other properties are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on generalized Perron complements of Z-matrices

The concept of the Perron complement of a nonnegative and irreducible matrix was introduced by Meyer in 1989 and it was used to construct an algorithm for computing the stationary distribution vector for Markov chains. Here properties of the generalized Perron complement of an n×n irreducible Z-matrixK are considered. First the result that the generalized Perron complements of K are irreducible...

متن کامل

Ela Generalized Schur Complements of Matrices and Compound Matrices

In this paper, we obtain some formulas for compound matrices of generalized Schur complements of matrices. Further, we give some Löwner partial orders for compound matrices of Schur complements of positive semidefinite Hermitian matrices, and obtain some estimates for eigenvalues of Schur complements of sums of positive semidefinite Hermitian matrices.

متن کامل

PERRON-FROBENIUS THEORY ON THE NUMERICAL RANGE FOR SOME CLASSES OF REAL MATRICES

We give further results for Perron-Frobenius theory on the numericalrange of real matrices and some other results generalized from nonnegative matricesto real matrices. We indicate two techniques for establishing the main theorem ofPerron and Frobenius on the numerical range. In the rst method, we use acorresponding version of Wielandt's lemma. The second technique involves graphtheory.

متن کامل

Ela Matrix Functions Preserving Sets

Matrix functions preserving several sets of generalized nonnegative matrices are characterized. These sets include PFn, the set of n×n real eventually positive matrices; and WPFn, the set of matrices A ∈ R such that A and its transpose have the Perron-Frobenius property. Necessary conditions and sufficient conditions for a matrix function to preserve the set of n× n real eventually nonnegative ...

متن کامل

Ela on General Matrices Having the Perron-frobenius Property∗

A matrix is said to have the Perron-Frobenius property if its spectral radius is an eigenvalue with a corresponding nonnegative eigenvector. Matrices having this and similar properties are studied in this paper as generalizations of nonnegative matrices. Sets consisting of such generalized nonnegative matrices are studied and certain topological aspects such as connectedness and closure are pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006